Generative Models and Discrete Optimization
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Generative Models

Learning Objectives.
a. Understand for which kinds of tasks generative models can be useful.
b. Understand how to formulate a latent-variable model.

c. Understand how we can use neural networks to define divergences between data-
generating distributions.



Having a Generative Model can be useful for many things.

Successful Applications of Generative Models
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We can also consider many practical problems defined in terms of learning conditional
probability distributions.
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Music
=> Science
=> Politics

Music
=> Science

=> Politics
Music
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=> Politics

do you know a website that you can find people who want to join bands ?
do you know a website that can help me with science ?
do you think that you can find a person who is in prison ?

all three are fabulous artists , with just incredible talent ! !

all three are genetically bonded with water , but just as many substances ,
are capable of producing a special case .

all three are competing with the government , just as far asi can .

but there are so many more 1 can &apos;t think of !
but there are so many more of the number of questions .
but there are so many more of the can 1 think of today .



Grammar Variational Autoencoder
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Figure 3. Searching the 56-dimensional latent space of the GVAE, starting at the molecule in the center.



A generative model is a model the approximates some data-generating distribution P(x)
where x € X is from some specified dataset.

A latent variable model is a model that approximates a joint data-generating distribution
P(x, ) of datapoints x € X and latent variables z.



GAN Pseudocode.

Suppose X is a dataset and P(x) is the generating distribution of the dataset.

Let Gy : RN — R3xbeightxwidth o 5 oy ral network with parameters 6.

Let D, : R>*heightxwidth 10 1[ be a neural network with parameters ¢b.



Samplez ~ N(0, I) and compute y = Gy(2).

Sample x ~ P(x).

Train D4 to be good at distinguishing x from y by minimizing
Er~pllog Dy(x)] + E.no.n [log(1 = Dy(G(2))].

Train Gy to make x more similar to y according to D 4 by minimizing
E;n0.n [108(Dy(G(2))].
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Latent Variable Model Pseudocode.

Suppose X is a dataset and P(x, z) is the generating distribution of the dataset.

LetE,, : R3xheightxwidth _, @N he 5 neural network with parameters 6.

Let Gy : RNV — R3*beightxwidth he 5 neyral network with parameters ¢.

LetDy : RY —1]0, 1] be a neural network with parameters Q.



Sample x ~ P(x).Sample z ~ N(0, I) and compute y = Gy(E,,(x)).

Train D 4 to be good at distinguishing z from y by minimizing
Ex-pllog Dy(x)] + E oy, [log(l — Dy(G(2))].

Train Gy to make x more similar to y according to a reconstruction loss of your choice.

But sampling is not differentiable!
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We can reparameterize the sampling procedure!
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Why do we want to use Variational Inference?

By describing our neural network in terms of a probability distribution we get a principled
way of defining the objective function.

T must push-forward the red measure towards the blue

What T s.t. Typ = v
minimizes [ D(x, T (x))p(dx)?

10

The amount of transport that needs to be done in the optimal case defines a metric



between distributions.
There are many ways of doing variational inference.

One way is to minimize the Wasserstein distance between g(x, z; a) and p(x, z).

Welp,q) = inf Ey,., [L(x,y)]
P(p.q)

=

A Reparameterization of the Optimal Transport Problem

When the data-generative model is expressed as a latent-variable model it turns out that
we can reparameterize the optimal transport problem to be over the search space of
encoding distributions g(z|x), rather than the search space of couplings y:

Wep,q) = inf [Eyq [L£(x, go(2))]
{¢:9(2)=p(2)}

To obtain a computational solution of this optimization problem, we relax it by introducing a
divergence term D[g(x|z; &) : p(z)] to get:

Wep,q) = inf [E_ ) [L(x, go(2)] + AD [q(z|x; @) : p(2)]
{4:9(2)=p(2)}

Code can be run here
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Limitations

exp0 --dataset

expl --dataset

exp2 --dataset

exp3 --dataset

exp4 --dataset

exp5 --dataset

expb6 --dataset

exp7 --dataset

mnist

mnist

mnist

mnist

mnist

mnist

mnist

mnist

These models are difficult to train on very rich data.

No obvious way of generalizing to images containing multiple objects.
Latent variable models are not identifiable.

Evaluating the models can be difficult.



Part Il - Discrete Optimization.

Learning Objectives.

- Understand how to identify discrete optimization tasks?
- How can we use neural networks to solve tasks involving discrete variables?

- Understand what Reinforcement Learning is and why it is a difficult problem



What is discrete optimization?

By discrete optimization we refer to optimization problems that involve discrete variables.

In discrete optimization we consider finding the optimal discrete mapping for some given
problem.

Examples.

¢ Playing Atari Breakout.
e Buying or selling stocks.

¢ Solving the Traveling Salesman Problem.
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We can think about these kinds of problems as problems involving probability distributions
that are called decisision processes.

Let S be a set of states and let A be a set of actions.

Reinforcement Learning - Definition

Reinforcement Learning is the problem of optimizing the parameters of some probabilistic
model to approximate a policy distribution with respect to a sum of expected reward
specified by some reward functionr : S X A - R.



Why are these problems discrete?

In all the above cases we want to learn a mapping from some sequence of observations

(X,)ﬁi1 to a finite set of actions.

Atari Breakout

[ )Y, — {Left, Wait, Right}

Buy or sell stocks
f @)X, — {Buy, Wait, Sell}



Travelling Salesman

Let

A = {Reykjavik, Akureyri, Egilsstadir, Stykkisholmur, Melrakkaslétta, Landmannalau
be a set of places to visit.

Given a sequence of places xtﬁ\il € A we want to learn the function.

f (xt)fil — x € A\{x1, ... xny}

Such that the total distance of our journey is as small as possible, i.e.

N
D dx, xi)
=1




Why are these problems challenging for neural networks to solve?

The success of neural networks relies on the fact that we can create good gradient
estimators for continuous functions.
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This allows us to update the parameters of our model towards optimal values of our
objective function.

01 = 0; + Vg, [Ey~Px,§~Q [L(y, Y)]

The challenge in making our neural networks approximate discrete functions is that
discrete functions are not differentiable.



However discrete distributions have continuous parameter spaces!
Example:
Letp € [0, 1].

Wessay that X ~ Ber(p)if X = 1 with probability p and X = 0 otherwise.



What if we could get gradients as easily as we do for continuous latent-variables?

We could answer discrete questions, such as.

- "In which pixel coordinates should I form a bounding box?".

- "How many objects are there in my image?".

- "As a program which of these functions should I try to execute?".

- "What type of a graph should I construct?"



- "Should I stop decoding this phrase and wait for further input?".
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(If time allows)

A gradient estimator is a functional 2 which has the property of being an estimate of,

VG[Epr [f(X)]

g lf()] = VyE,p [f ()]



We say that a gradient estimator is unbiased if,

|Ex~p [g [f(x)]] = VH[Epr [f (0]



The most simple way (REINFORCE). Doesn't assume anything about the function f.

VoE o [F(0)] = / Vop(xlO) () dx

X
= /X px|0)V g log p(x|O)f (x)dx

= [Ep(x|9) [Vg log p(—xle)f(x)]
= [Ep(xlg) [V@ log p(xlg)f(X)]

= Epo) [f()Vg log p(x|6)]



And the last equality is obtained since f does not depend on 6.

This gradient estimator is one of the most basic estimators we could define and is known for
having high variance.



The pathwise derivative to the rescue!

Define a reparameterization of the samples z in terms of an invertible differentiable
function, T', and sample ¢ ~ p, by,

z=T(e,a), €~ p,

The choice of the function T" depends on the functional form of the variational distribution.

This allows us to get an unbiased gradient estimator,

Va[EZNCI(Z|XZa) [f(z)] — [E€~p€ [Vaf(T(G, a))]

2,and we

Example: If g is a normal distribution then the variational parametersa = u, o
can choose

T(a,e)=u+e®o

Thanks!



