
Generative Models and Discrete OptimizationGenerative Models and Discrete Optimization
Presented by: Þorsteinn (Thor) Hjörtur JónssonPresented by: Þorsteinn (Thor) Hjörtur Jónsson



Generative ModelsGenerative Models
Learning Objectives.

a. Understand for which kinds of tasks generative models can be useful.

b. Understand how to formulate a latent-variable model.

c. Understand how we can use neural networks to de�ne divergences between data-
generating distributions.



Having a Generative Model can be useful for many things.

[Source: Shakir Mohamed]
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We can also consider many practical problems de�ned in terms of learning conditional
probability distributions.











A generative model is a model the approximates some data-generating distribution 
where  is from some speci�ed dataset.

A latent variable model is a model that approximates a joint data-generating distribution 
 of datapoints  and latent variables .

P(x)
x ∈ X

P(x, z) x ∈ X z



GAN Pseudocode.

Suppose  is a dataset and  is the generating distribution of the dataset.

Let  be a neural network with parameters .

Let  be a neural network with parameters .

X P(x)

: →Gθ ℝ
N

ℝ
3×height×width θ

: →]0, 1[Dϕ ℝ
3×height×width ϕ



Sample  and compute .

Sample .

Train  to be good at distinguishing  from  by minimizing 

.

Train  to make  more similar to  according to  by minimizing 

.

z ∼ N(0, I) y = (z)Gθ

x ∼ P(x)

Dϕ x y

[log (x)] + [log(1 − (G(z))]�x∼P Dϕ �z∼N(0,I) Dϕ

Gθ x y Dϕ

[log( (G(z))]�z∼N(0,I) Dϕ





Latent Variable Model Pseudocode.

Suppose  is a dataset and  is the generating distribution of the dataset.

Let  be a neural network with parameters .

Let  be a neural network with parameters .

Let  be a neural network with parameters .

X P(x, z)

: →Eφ ℝ
3×height×width

ℝ
N θ

: →Gθ ℝ
N

ℝ
3×height×width φ

: →]0, 1[Dϕ ℝ
N ϕ



Sample . Sample  and compute .

Train  to be good at distinguishing  from  by minimizing 

.

Train  to make  more similar to  according to a reconstruction loss of your choice.

But sampling is not di�erentiable!But sampling is not di�erentiable!

x ∼ P(x) z ∼ N(0, I) y = ( (x))Gθ Eφ

Dϕ z y

[log (x)] + [log(1 − (G(z))]�x∼P Dϕ �z∼N(0,I) Dϕ

Gθ x y



We can reparameterize the sampling procedure!We can reparameterize the sampling procedure!



Why do we want to use Variational Inference?

By describing our neural network in terms of a probability distribution we get a principled
way of de�ning the objective function.

The amount of transport that needs to be done in the optimal case de�nes a metric



between distributions.

There are many ways of doing variational inference.

One way is to minimize the Wasserstein distance between  and .

A Reparameterization of the Optimal Transport Problem

When the data-generative model is expressed as a latent-variable model it turns out that
we can reparameterize the optimal transport problem to be over the search space of
encoding distributions , rather than the search space of couplings :

To obtain a computational solution of this optimization problem, we relax it by introducing a
divergence term  to get:

Code can be run hereCode can be run here

q(x, z; α) p(x, z)

(p, q) := [(x, y)]Wc inf
γ∈(p,q)

�x,y∼γ

q(z|x) γ

(p, q) = [(x, (z))]Wc inf
{q:q(z)=p(z)}

�z∼q(z) gθ

D[q(x|z; α) : p(z)]

(p, q) ≈ [(x, (z))] + λD [q(z|x; α) : p(z)]Wc inf
{q:q(z)=p(z)}

�z∼q(z) gθ



In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

LimitationsLimitations

run run_models --xp_id exp0 --dataset mnist 

run run_models --xp_id exp1 --dataset mnist 

run run_models --xp_id exp2 --dataset mnist 

run run_models --xp_id exp3 --dataset mnist 

run run_models --xp_id exp4 --dataset mnist 

run run_models --xp_id exp5 --dataset mnist 

run run_models --xp_id exp6 --dataset mnist 

run run_models --xp_id exp7 --dataset mnist 

- These models are difficult to train on very rich data. 
- No obvious way of generalizing to images containing multiple objects. 
- Latent variable models are not identifiable. 
- Evaluating the models can be difficult.



Part II - Discrete Optimization.Part II - Discrete Optimization.
Learning Objectives.

 - Understand how to identify discrete optimization tasks? 
 
 - How can we use neural networks to solve tasks involving discrete variables? 
 
 - Understand what Reinforcement Learning is and why it is a difficult problem



What is discrete optimization?

By discrete optimization we refer to optimization problems that involve discrete variables.

In discrete optimization we consider �nding the optimal discrete mapping for some given
problem.

Examples.

Playing Atari Breakout.

Buying or selling stocks.

Solving the Traveling Salesman Problem.
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We can think about these kinds of problems as problems involving probability distributions
that are called decisision processes.

Let  be a set of states and let  be a set of actions.

Reinforcement Learning - De�nitionReinforcement Learning - De�nition
Reinforcement Learning is the problem of optimizing the parameters of some probabilistic
model to approximate a policy distribution with respect to a sum of expected reward
speci�ed by some reward function .

 

r :  × → ℝ



Why are these problems discrete?

In all the above cases we want to learn a mapping from some sequence of observations 
 to a �nite set of actions.

Atari BreakoutAtari Breakout

Buy or sell stocksBuy or sell stocks

(Xt)
N
t=1

f : ( → {Left, Wait, Right}xt)
N
t=1

f : ( → {Buy, Wait, Sell}xt)
N
t=1



Travelling SalesmanTravelling Salesman
Let 

be a set of places to visit.

Given a sequence of places  we want to learn the function.

Such that the total distance of our journey is as small as possible, i.e.

A = {Reykjavík, Akureyri, Egilsstaðir, Stykkishólmur, Melrakkaslétta, Landmannalau

∈ Axt
N
i=1

f : ( → x ∈ A∖{ ,… }xt)
N
t=1

x1 xN

d( , )∑
t=1

N

xt xt+1



Why are these problems challenging for neural networks to solve?

The success of neural networks relies on the fact that we can create good gradient
estimators for continuous functions.





This allows us to update the parameters of our model towards optimal values of our
objective function.

The challenge in making our neural networks approximate discrete functions is that
discrete functions are not differentiable.

= + η [(y, )]θt+1 θt ∇θt�y∼ , ∼QPx ŷ
ŷ



However discrete distributions have continuous parameter spaces!

Example:

Let .

We say that  if  with probability  and  otherwise.

p ∈ [0, 1]

X ∼ Ber(p) X = 1 p X = 0



What if we could get gradients as easily as we do for continuous latent-variables?

We could answer discrete questions, such as.

- "In which pixel coordinates should I form a bounding box?".

- "How many objects are there in my image?".

- "As a program which of these functions should I try to execute?".

- "What type of a graph should I construct?"



- "Should I stop decoding this phrase and wait for further input?". 
 



(If time allows)(If time allows)
A gradient estimator is a functional  which has the property of being an estimate of,

i.e.

ĝ 

[f (x)]∇θ�x∼p

[f (x)] ≈ [f (x)]ĝ  ∇θ�x∼p



We say that a gradient estimator is unbiased if,

[ [f (x)]] = [f (x)]�x∼p ĝ  ∇θ�x∼p



The most simple way (REINFORCE). Doesn't assume anything about the function .

.

f

[f (x)] = p(x|θ)f (x) dx∇θ�p(x|θ) ∫


∇θ

= p(x|θ) log p(x|θ)f (x)dx∫


∇θ

= [ log p(x|θ)f (x)]�p(x|θ) ∇θ

= [ log p(x|θ)f (x)]�p(x|θ) ∇θ

= [f (x) log p(x|θ)]�p(x|θ) ∇θ



And the last equality is obtained since  does not depend on .

This gradient estimator is one of the most basic estimators we could de�ne and is known for
having high variance.

f θ



The pathwise derivative to the rescue!The pathwise derivative to the rescue!
De�ne a reparameterization of the samples  in terms of an invertible differentiable
function, , and sample  by,

The choice of the function  depends on the functional form of the variational distribution.

This allows us to get an unbiased gradient estimator,

Example: If  is a normal distribution then the variational parameters , and we
can choose

Thanks!

z
T ϵ ∼ pϵ

z = T(ϵ, α), ϵ ∼ pϵ

T

[f (z)] = [ f (T(ϵ, α))].∇α�z∼q(z|x:α) �ϵ∼pϵ
∇α

q α = μ, σ2

T(α, ϵ) = μ + ϵ ⊙ σ


